
The Architecture of Smart Help:
An Expert Help System

for Computer Algebra Systems∗

R. P. dos Santos† and W. L. Roque‡

Universität Karlsruhe
Institut für Algorithmen und Kognitive Systeme
Am Fasanengarten 5 – D7500 Karlsruhe 1 – FRG

Phone: (+49) 721 608-4328
BitNet: kg07@dkauni2 and kg03@dkauni2

Abstract

We present here the architecture, operation and tools
concerning the design of Smart Help, an expert help
system for aiding users of Computer Algebra Systems.
Smart Help is implemented in the knowledge repre-
sentation system shell MANTRA, a hybrid system
which supports the logic, frame, semantic networks
and production rules knowledge representation meth-
ods. Presently, the Smart Help domain knowledge base
concerns REDUCE.

1 Introduction

In the last twenty years very powerful and sophisti-
cated computing systems, known as Computer Algebra
Systems, have become available for helping engineers,
mathematicians and scientists in doing their hard pro-
fessional calculations in different fields[1]. These sys-
tems are having also a great impact on education[2].
But to profit from them one needs to know in addi-
tion to the mathematical concepts involved also the
capabilities of these computing systems and how to
operate them. On the other hand, having access to
these systems one can avoid exploring the current bib-
liography looking for the best, latest and more sophis-
ticated mathematical techniques required to perform
the calculations since many of these have been already
implemented in by the algorithm experts and systems

∗This research was supported by Conselho Nacional de De-
senvolvimento Cient́ıfico e Tecnológico - CNPq, Brazil.
†On leave of Centro Brasileiro de Pesquisas F́ısicas, Rua

Xavier Sigaud, 150, 22290 Rio de Janeiro, RJ, Brazil.
‡On leave of Universidade de Braśılia, Instituto de Ciências

Exatas, 70910 Braśılia, DF, Brazil.

designers.
REDUCE[3, 4], like many modern computer algebra

systems (MACSYMA, Mathematica, Maple, Scratch-
pad to name a few), embodies a large amount of math-
ematical knowledge which is spread out through thou-
sands of procedures in the source code of the system.
Most of this knowledge is, however, in an implicit form
almost inaccessible to the user, who would have to de-
cipher the source files to recover it. In fact, beginners
are normally more interested in something like “What
do I need to type to have my integral done?” instead of
“What is the available character set?”. Or very likely
also in “Why the result I got is so ugly in comparison
to the one I found in the tables?” and not in “How is
the expression internally stored?”.

The process of learning how to use a CAS may be
done reading throughout the manual available for the
system, a sort of user’s guide or in the practical hands
on approach. However, soon the begginers get stuck
and the most confortable and easiest way to solve the
problem is consulting an expert on the system. They, in
general, do not want to waste their time looking either
a book or manual up, searching (sometimes in vain)
through an enormous amount of terminology, concepts
and syntaxes, for the information they need just to be
able to start using the system to solve a simple prob-
lem: an integral, for instance. That is, perhaps, the
reason why many of the potential users with no pre-
vious experience with computers keep avoiding to use
them. In fact, human consultation is normally scarce
and/or expensive, especially in the field of computer
algebra where the community is still not very large.

This kind of consultation could, however, be accom-
plished by an on-line help system (and some progress
in this direction has been attained[5, 6]) or even better,

1



by an Intelligent Tutorial System (ITS) [7]. Therefore,
any one of these facilities would be most welcomed.

The idea behind a help system is that existing a
stored knowledge base, consisting of a large amount of
information elements, structured in levels of specializa-
tion, an expert help system could generate by inference
(not just by pure recovering) an information, which
might not be explicity stored and that might be an ad-
equate (in terms of abstraction, difficulty, detail, etc.)
directive to the user. An intelligent help facility could
reason about the user’s query and then give a reason-
able reply or else, suggest what has to be consulted or
even what to do next.

It is our intention here to discuss the architecture,
operation and tools concerning the design of a proto-
type of Smart Help, an expert help system with these
features, as well as to present an implementation of
it. Presently, the Smart Help domain knowledge base
concerns REDUCE. It may well be used, however, to
implement different CAS bases. The ideas forwarded
herein are in a prototypal basis, but we hope that
they will raise the interest of the CAS community and
evolve to reach at the end the full system implementa-
tion.

In section 2 we comment briefly on the computer
algebra system REDUCE, identify the knowledge em-
bodied by this system and propose a taxonomy for it.
In section 3 we describe the knowledge representation
shell MANTRA[8] which we have made use of. Sec-
tion 4 is concerned with the Smart Help system design.
Finally, in section 5, we give some conclusions to the
paper and suggest further upgrades which would turn
Smart Help into a truly Intelligent Tutorial System[7].
In section 6 we give our acknowledgements. In the Ap-
pendices, we give an example of the interaction and the
syntax.

2 The CAS Reduce

This section concerns the identification and conceptu-
alization of the knowledge concerning REDUCE to be
embodied by Smart Help. As we noted in the intro-
duction, we take REDUCE as an example of CAS
and its choice for this study is a mere consequence of
our previous familiarity with it.

REDUCE[3] is a fairly powerful system for carrying
out a variety of mathematical calculations such as to
manipulate polynomials in a variety of forms, simplify
expressions, to differentiate and integrate algebraic ex-
pressions, do some modern differential geometry calcu-
lations, study the Lie-symmetries of systems of partial
differential equations, and many others.

The system is made out of different knowledge do-
mains (mathematical, computational, etc.). The rep-
resentation of the mathematical domain is the object
of another work of our group[9]. In order to represent
in Smart Help the computational domain, we classified
the corresponding knowledge in the following taxon-
omy of categories:

Syntax: Informations about the number and type of
the arguments, and requisites and prerequisites of
a REDUCE command, declaration or operator
(this is the only type of information given by many
help systems).

Terminology: Definitions of the various terms like
identifier, operator, kernel, etc., and of their inter-
relations, employed in documents related to RE-
DUCE and, also important, in error messages
from REDUCE (this matter can be quite con-
fusing to the initial user).

Concepts: Informations like the fact that integration
in REDUCE is represented by an operator called
INT, or a note that integration is related to dif-
ferentiation, or even a reference for the algorithm
which it implements.1

Procedures: General sequences of commands which
should be given to perform a certain task like, for
instance, defining a new infix operator: one has
to declare the operator infix through the INFIX
declaration and then give it a precedence by means
of the PRECEDENCE declaration.

Heuristics: General rules and tips that simplify and
improve approachs to problem-solving (this kind
of information comes with experience and is one
of the most frequent in consultations from begin-
ners). For example, “If you want to compute a
definite integration, you can try evaluating the in-
definite integral, saving the resulting expression in
a variable and then substituting locally the limits
of integration in it and finally subtracting the re-
sults”.

All these different forms of knowledge require one or
more knowledge representation formalism and the best
outcome may only be found through the integration of
various knowledge representation methods.

In subsection 4.2 we discuss this matter in more de-
tail and present the mapping currently implemented in
the prototype of Smart Help.

1This knowledge category should not be confused with con-
cepts which are defined through frames. To avoid this possibility,
except for one mention in the next section, all other ones will re-
fer to the knowledge category rather than to the usual meaning.

2



3 The KRS Mantra2

MANTRA[8] is a hybrid knowledge representation
shell which integrates three different knowledge rep-
resentation methods:

Four-valued first-order logic language,
used to express assertional knowledge concerning
facts about a domain. It also allows one to verify
if an assertion is entailed (i.e. implicitly repre-
sented) by this set of facts. The entailment al-
gorithm is decidable[10] but presents a weaker se-
mantics which excludes the chaining of indepen-
dent facts, thus ruling out modus ponens[11] but
allowing quantifiers.

Terminological language [12] (a kind of frame
method), used to define concepts (not to be con-
fused with the knowledge category with the same
name) which are associated to sets of objects of
a domain, which are described by restricting the
values of their properties. In MANTRA, this lan-
guage was extended to allow the definition of n-
place relations over the concepts. The inference
procedure of this method is the subsumption pro-
cedure.

Semantic network, which is a representation to de-
fine hierarchies of classes of objects and the inher-
itance of properties from class to subclass. It also
allows one to verify the possible relations between
classes, including exception and default links, as
well as redundant links and ambiguous networks.
No distinction is made here between objects and
classes since this can be done making use of the
logic method. The inference procedure available
here follows the skeptical inheritance approach[13].

One could think that classical logic would be able
to generate all knowledge entailed by a given concept.
Unfortunately, however, the systems based on the com-
plete first-order logic, suffer from the inherent problem
of Combinatorial Explosion. Also, the entailment prob-
lem is not decidable in first-order logic. In addition, the
knowledge to be represented is often incomplete and in-
coherent. Due to these facts, the knowledge represen-
tation system MANTRA has been designed associat-
ing the three knowledge representation methods above,
based on a four-valued approach. The common four-
valued semantic associated to these allows the model-
ing of the aspects of ignorance and inconsistency, useful
for representing incomplete and/or incoherent knowl-
edge. The integration of frame and semantic network

2This description of the MANTRA System is based on [8]

methods in addition to logic allows modus ponens in a
controlled way.

MANTRA’s architecture consists of three levels:

Epistemological level, where the knowledge repre-
sentation methods are defined.

Logical level, where the concept of knowledge bases
and the primitives to manipulate them are defined.

Heuristic level, where a production system can be
defined through primitives allowing the specifica-
tion of ad hoc inference steps.

At present only the epistemological and logical levels
are implemented in the system and the heuristic level
is at some extent being simulated by the supporting
Lisp language itself.

MANTRA has also two interface modules which
provide an interactive or a programming environment
for the user. The latter is interesting as it allows com-
mands mixing MANTRA and Lisp syntaxes and do-
ing so, it allows one to build a production system from
scratch or to adopt one already written in Lisp.

4 The Smart Help Expert Sys-
tem

This section is concerned with the formalization of the
knowledge involved in building an expert help system
that can answer questions from the user of REDUCE
concerning its terminology, structure, semantics, and
syntax, in much the same way as an expert colleague
would do. As we have pointed out in the introductory
section, such an on-line help would be invaluable for
the begginer, by saving a lot of time searching back an
forth through the system User’s Manual.

4.1 The Conception of Smart Help

The conception of Smart Help follows the tradition
of help systems being passive. This means that the
user learns how to use REDUCE playing freely with
it without being interrupted by the Smart Help, in con-
trast to tutorial systems which direct the learning.

It looks like a normal REDUCE session but has
Smart Help (and his knowledge base, as well as
MANTRA) loaded and accessible by a call to it.
When the user gets a confusing answer or a meaning-
less error message (and in fact REDUCE users know
how often this happens), or even when he does not
know what to do next to get his calculations done, he
invokes the Smart Help to clarify the point (see inter-
action example in Appendix A).

3



Note, however, that the problem might have been
caused by earlier mistakes (a forgotten variable as-
signment long before, for example). An explanation
facility[14] to trace the session history and find the ex-
act place at which the misconception first had its effect
was not included in Smart Help because we considered
it more appropriate to a tutoring system. That is, in
case of an error interruption, progress can be made only
if, from the correct definition, usage, prerequisites, etc.,
of the queried topic, as returned by the Smart Help,
the user can pinpoint himself the misconception which
caused the problem.

4.2 The Representation of Reduce’s
Knowledge in Smart Help

A question could be raised, namely why do we use a
knowledge representation shell instead of simpler de-
vices. The answer is twofold: first, Smart Help was not
conceived as a final product in itself, rather as a step
towards the development of more complex and useful
environments, like an ITS, as mentioned in the intro-
duction. There plays the semantic of the concepts a
decisive role. Second, Smart Help should constitute an
appropriate environment to verify the taxonomy pro-
posed for the REDUCE knowledge and, for that, we
should have a versatile representation device, prefer-
ably incorporating Artificial Intelligence techniques.

Considering the taxonomy of the knowledge embod-
ied by REDUCE, presented in section 2 above, and the
knowledge representation methods available in MAN-
TRA, as described previously in section 3, we had to
find the best fit of both to guarantee efficiency in recov-
ering knowledge from the base and in reasoning with
it, according to the inherent structure of each knowl-
edge category and to its adaptiveness to the specific
representation method.

The mapping used to match the knowledge cate-
gories to the methods and vice-versa have suffered con-
tinuous changes since the beginning of this project, as
a consequence of our search of efficiency and of our
increasing understanding of the nature of the prob-
lem. We reached a mapping which seemed reason-
able to start building a prototype implementing it.
With this prototype in hand we can now start re-
thinking this mapping. We have exploited all the
MANTRA’s implemented knowledge representation
methods for safety but are not sure (as yet!) that the
best mapping include all of them. The current version
of it is presented in the following

• from knowledge types to representation
methods: In some extent this direction of the

map corresponds to the storing of knowledge into
the knowledge base.

Syntax: Syntactical descriptions of operators,
statements, etc., were represented making
use of the frame method. The slots provide a
natural way to indicate the number and type
of arguments as expectation values. For ex-
ample, the syntax of the integration operator
could be defined as

integration := ∃ name:[INT] u
∃ argument:[T] u
∀ (argument:[first]):

[expression] u
∀ (argument:[second]):

[variable]

Terminology: Terminological definitions have
been represented very conveniently through
the frame method available in MANTRA as
a terminological language. Each term (e.g.,
right-operator) is defined as a specialization
of a more generic one (e.g., infix-operator) by
means of slots, corresponding to attributes,
that are filled with the values which spec-
ify the former with respect to the last one
(e.g., the flag RIGHT set). On the other
hand, some terms (e.g., left-operator) can be
seen as defaults (or exceptions) to the more
generic one and have no distinguishing char-
acteristic from it; in this case, the term is
defined by a default link “KIND-OF” con-
necting them according to the semantic net-
work method. As mentioned earlier, the rela-
tion between terms corresponding to objects
(e.g., WHERE) and terms corresponding to
classes to which the former belong are rep-
resented through the logic method. For ex-
ample, these three knowledge units can be
represented as

right-operator := infix-operator u
∃ flag:[RIGHT]

kind-of := left-operator → infix-operator
infix-operator (WHERE)

Concepts: The conceptual knowledge has been
represented by associating concepts to con-
ceptual definitions and to conceptually re-
lated ones. These associations were acco-
modated in a semantic network of hierar-
chies where each hierarchy represents a type
of link between concepts (e.g., IS-REPRE-
SENTED-BY, IS-RELATED-TO, REF-
ERENCE, etc.). For instance, the examples

4



presented in section 2 above have been rep-
resented as

is-represented-by :=
integration → INT

is-related-to :=
integration → differentiation

reference :=
integration → Reduce Manual, section 7.4

Procedures: The procedural knowledge has
been represented as logic expressions consist-
ing in a left-side and a right-side and have
been stored in a hash-table3. The left-side de-
fines the context (usually the queried topic)
in which the procedure, which is defined it-
self in the right-side, is pertinent. The recov-
ering of this knowledge consists in searching
the hash-table for entries whose left-side con-
tain the present context and getting its right-
sides. For instance, the example presented in
section 2 was represented as follows

{(define infix-operator),
((declare (infix operator))
(declare precedence))}

Heuristics: The heuristical knowledge has also
been represented as logic expressions consist-
ing in a left-side and a right-side but stored
in a different hash-table. The recovering of
this knowledge is done the same way as the
procedural knowledge above. For example,

{(definite integration),
((do indefinite-integration)
(save-result-in variable)
(locally-substitute values))}

• from representation methods to knowledge
types This direction of the map corresponds
somewhat to the recovering of knowledge from the
knowledge base.

Logic: We used this method to represent specific
attributes of terminological and syntactical
nature of individual entities of REDUCE. In
addition, individual entities, as instances of
concepts, were considered knowledge unities
relevant to the example link of the concept
knowledge category.

Frame: The type of frame representation imple-
mented in MANTRA led us to make use of

3See subsection 4.3

this method to represent part of the termi-
nological knowledge as well as the syntacti-
cal knowledge as defined in the taxonomy of
section 2 (see examples above under syntax
and terminology). Like the case of the logic
method, terms which are subsumed by others
were considered instances of these and, there-
fore, relevant when recovering for the exam-
ple link of concept category.

Semantic network: We used this method as a
kind of associative memory, useful to store
the conceptual knowledge of REDUCE by
linking related concepts in an efficient way.
As we said before, the remaining termino-
logical knowledge (defaults and exceptions),
which was not fitted to frame was also stored
making use of this method through the link
KIND-OF (see again examples above under
syntax and terminology).

4.3 The Architecture of Smart Help

Technically, Smart Help is a Production System on
the top of a particular implementation of MANTRA
which has Reduce integrated as an additional knowl-
edge representation module (see Fig. 14). Since the
heuristic level of MANTRA has not yet been imple-
mented, being presently represented by the Lisp lan-
guage itself, Smart Help is coded in Lisp and resides
in the same Lisp session of MANTRA. To the user it
looks like a normal REDUCE session but Smart Help
is loaded and accessible through the operator shelp.

The domain knowledge base was defined as an object
by means of the object-oriented extension of Common
Lisp called Corbit[15]. The five knowledge categories
defined in section 2 were implemented as aspects of the
knowledge base object as below

(defobject ob-kbase
(ap-new :function #’kbase-new)
(ap-show :function #’kbase-show)
(ap-terminology :object (an ob-terminology))
(ap-syntax :object (an ob-syntax))
(ap-concept :object (an ob-concept))
(ap-procedure :object (an ob-procedure))
(ap-heuristic :object (an ob-heuristic))
(ap-term :value ’() ) )

4The architeture of Smart Help is shown in more detail than
MANTRA or REDUCE since the former is the main concern
here. Better descriptions of both can be found in [8] and [3]
respectively.

5



Figure 1: The Structure of Smart Help

The aspects ap-new and ap-show are used to initializate
and to exhibit the contents of the knowledge base, and
the aspect ap-term contains a list of topics defined and
available in the knowledge base.

Each knowledge category aspect being also defined
as objects, has its own storing and recovering procedure
corresponding to the aspects ap-set and ap-get below.

(defobject ob-terminology
(ap-set :function #’terminology-set)
(ap-get :function #’terminology-get) )

(defobject ob-syntax
(ap-set :function #’syntax-set)
(ap-get :function #’syntax-get) )

(defobject ob-concept
(ap-definition :value nil)
(ap-set :function #’concept-set)
(ap-get :function #’concept-get) )

(defobject ob-procedure
(ap-definition :value nil)
(ap-set :function #’procedure-set)
(ap-get :function #’procedure-get) )

(defobject ob-heuristic
(ap-definition :value nil)
(ap-set :function #’heuristic-set)
(ap-get :function #’heuristic-get) )

The aspect ap-definition presented in the definition of
the concept, procedure and heuristic objects are hash-
tables. In the concept object case, it is used to store def-
initions which appear as strings in the input file, which
is not accepted by MANTRA’s syntax. They are in-
dexed by a symbol generated by the gensym Lisp pro-
cedure which is then passed to MANTRA. In the pro-
cedure and heuristic cases, these hash-tables are used to
store the knowledge units themselves since this knowl-
edge categories do not map to MANTRA, as men-
tioned in subsection 4.2.

The mapping of the terminology, syntax and con-
cept categories to the MANTRA’s knowledge repre-
sentation methods, as described above, was then eas-
ily implemented in the “mantra-interface” block. The
mapping of the procedures and heuristic categories into
Lisp hash-tables is done by the “kbase-management”
block.

The knowledge recovered during the process of a
query is stored in a Lisp structure called “answer” in
the figure above and defined as

(defstruct (st-answer
(:conc-name nil)
(:constructor build-answer)
(:print-function print-answer) )

(terminological-part (ap-get
(ap-terminology *ob-kbase*)))

(conceptual-part (create-st-concept))
(syntactical-part (ap-get

(ap-syntax *ob-kbase*)))
(procedural-part (ap-get

(ap-procedure *ob-kbase*)))
(heuristical-part (ap-get

(ap-heuristic *ob-kbase*))) )

It possesses partitions corresponding to the five cat-
egories of knowlege. This structure is periodically in-
spected by the “query processor” unity in the pro-
cess of adequating the answer to the user’s needs,
as described in subsection 4.4. The slots constructor
and print-function designate the procedures to gen-
erate and print the answer respectively. Note that
the answer is initialized already filled with the knowl-
edge concerning the queried topic by means of the
calls to the recovering procedures corresponding to

6



each knowledge category. The partition correspond-
ing to concepts is by its side defined as another struc-
ture possessing partitions corresponding to the vari-
ous links (IS-REPRESENTED-BY, IS-RELATED-
TO, etc.) mentioned above concerning to the mapping
to MANTRA. Its definition is the following:

(defstruct (st-concept
(:conc-name nil)
(:constructor

create-st-concept) )
(is-represented-by-link (ap-get

(ap-concept *ob-kbase*)
’IS-REPRESENTED-BY))

(is-tested-by-link (ap-get
(ap-concept *ob-kbase*)
’IS-TESTED-BY))

(is-implemented-through-link (ap-get
(ap-concept *ob-kbase*)
’IS-IMPLEMENTED-THROUGH))

(example-link (ap-get
(ap-concept *ob-kbase*)
’EXAMPLE))

(reference-link (ap-get
(ap-concept *ob-kbase*)
’REFERENCE))

(is-related-to-link (ap-get
(ap-concept *ob-kbase*)
’IS-RELATED-TO)) )

That all allows the easy manipulation of the recov-
ered knowledge in a very structured way. It also makes
simple the implementation of the mapping from RE-
DUCE knowledge types to MANTRA knowledge rep-
resentation methods.

4.4 The Production System Rules

A number of rules were implemented in the production
system of Smart Help. We present them in the follow-
ing. Presently, they are inserted in the code itself. We
consider now to get them defined in a production rule
base, what would give flexibility and clearness to our
system.

When asked by the user about a topic, Smart Help

1. Assumes that the present level of familiarity of the
user with REDUCE (student model) can be in-
ferred from the level of specification of the queried
topic, which is characterized by a numeric heuris-
tical parameter, ranging from 1 to 3, associated to
it. For example, if someone queries about “inte-
gration” (very general – parameter = 1) it seems

probable to be a very novice user but if one queries
about “infix-operators” (more specialized – pa-
rameter = 2) it should be considered as an user
with some familiarity. As it was mentioned be-
fore, Smart Help does not keep a history of previ-
ous queries and as a consequence we were not able
to imagine a better way of estimating the user’s
familiarity with REDUCE.

2. Queries the domain knowledge base, to recover all
informations related to the given topic. This pro-
cess consists in the following steps:

(a) To query the conceptual aspect, by querying
all the links of the defined semantic network
links (except the KIND-OF link) about the
topic, in an attempt to define it conceptu-
ally. As we have said, by querying the logic
and frame methods, it is also prepared a list
of subsumed topics to be given to the user
as a suggestion for further queries. (This is
another opportunity to take care of the stu-
dent’s model.)

(b) To query the terminological aspect, by query-
ing the frame, logic and the semantic network
(KIND-OF link) methods about the topic in
an attempt to define it terminologically.

(c) To query the syntactical aspect, by querying
the frame method about the topic in an at-
tempt to recover its syntax of usage.

(d) To query the procedural aspect, by searching
the appropriate hash-table5 about the topic,
in an attempt to recover procedures associ-
ated to it.

(e) To query the heuristical aspect, by searching
the appropriate hash-table6 about the topic,
in an attempt to recover heuristical rules as-
sociated to it.

3. Evaluates the level of generality of the terms re-
covered to see if they are in the same level of
specialization (same value of the parameter). If
a concept is too specific (much greater value of
the parameter), Smart Help tries to redefine it in
terms of more general concepts. (The idea here is
to adequate the answer to the user’s needs, stim-
ulating him, on the other hand, to proceed with a
deeper investigation into the system. Also it is an
opportunity to circumvent a possible inadequate
evaluation of the student’s model). If a concept is
too general, however, it is simply deleted.

5See subsection 4.3
6idem

7



4. Formats the recovered knowledge in the form of
a readable answer, defining the queried concept
and its usage in terms of the recovered knowledge.
(Presently this process is quite crude as it is a
peripherical point of the implementation. It will
be improved latter on.)

5. Prints the answer returning control to REDUCE.

5 Conclusions

We have presented and proposed in this report a fairly
general design of an expert help facility for aiding users
of Computer Algebra Systems. Although the expert
help system presented here has been particularly ori-
ented to REDUCE (as a consequence of our former
experience with this system), we point out that the
concept of Smart Help can be extended to other CAS
as well.

The reasons for introducing Smart Help facility in-
clude:

• It will provide an on-line help for the system, aid-
ing the users to find specific informations about
the system terminology, structure, syntax, etc.

• It will allow the potential user to access the whole
capabilities of the system.

• It can contribute to the development of Intelligent
Computer Algebra Systems[16, ?], which more
than simply being able to do calculations, could
interact with the user and free him of many de-
tails concerning the specification of his problem.

The Smart Help has no intention to teach the user
how to program efficiently in REDUCE or behave like
a tutoring system. However, it can be used in the learn-
ing process as a complimentary teaching tool. Fol-
lowing the ideas addressed in this report, we intend
afterwards to develop an ITS[7] for REDUCE. The
ITS should inherit all the compatible facilities already
available in the Smart Help. In addition, many other
facilities would become available, such as, a deeper un-
derstanding of REDUCE’s semantics, keeping track
of history, explanations[14], a dynamical reasonning on
the student’s model[7], etc.

The full implementation of Smart Help as a final
product was not our main concern here. This task will
certainly need few more people working in a close co-
laboration to build up a satisfactory knowledge base to
reach at the end the principal objective that is helping
a CAS user.

6 Acknowledgements

We would like to thank Prof. J. Calmet and I.A. Tjan-
dra for enlightening discussions and the Conselho Na-
cional de Desenvolvimento Cient́ıfico e Tecnológico –
CNPq, Brazil, for the financial support.

References

[1] BOYLE, Ann and CAVINESS, B.F. (eds.), Fu-
ture Directions for Research in Symbolic Compu-
tation – Report of a Workshop on Symbolic and
Algebraic Computation, April 29–30, 1988, Wash-
ington, DC , chapter 3, and references therein,
Society for Industrial and Applied Mathematics,
Philadelphia, 1990.

[2] BUCHBERGER, Bruno (ed.), Symbolic Mathe-
matical Systems and their Effects on the Curricu-
lum, special session in the “5th. International Con-
ference on Mathematical Education”, Adelaide,
Australia, 24–30/8, 1984. SIGSAM Bull. 18(4),
11/1984; BUCHBERGER, Bruno, Should Stu-
dents Learn Integration Rules?, Technical Report,
RISC Johannes Kepler University, Linz, Austria,
13/3/1989.

[3] HEARN, Anthony C., REDUCE User’s Manual:
Version 3.3, RAND Publication CP78, The Rand
Corporation, Santa Barbara, Calif., 4/1987.

[4] MacCALLUM, M.A.H., and WRIGHT, Fran-
cis, Algebraic Computing with REDUCE, in
REBOUÇAS, M.J. (ed.), “Lecture Notes from the
I Brazilian School on Computer Algebra”, vol.
I, Oxford University Press (forthcoming book),
1990.

[5] GENESERETH, Michael R., An Automated Con-
sultant for MACSYMA, in “IJCAI 5” (proceed-
ings of International Joint Conference on Artificial
Intelligence, Cambridge, Mass., 8/77):789, 1977.

[6] HARPER,
David, Reduce Forum, 23/8/1989; SCHOEPF,
Rainer M., Reduce Forum, 24/8/1989; LAMBE,
Larry A., Reduce Forum, 24/8/1989; AGER,
Tryg, Reduce Forum, 24/8/1989; DEWAR, Mike,
Reduce Forum, 24/8/1989; MARTI, Jed, Reduce
Forum, 2/8/1990; WRIGHT, Francis, Reduce Fo-
rum, 2/8/1990; COPELAND, Gary, Reduce Fo-
rum, 2/8/1990.

[7] SLEEMAN, D. and BROWN, J.S., Intelligent Tu-
toring Systems, Academic Press, London, 1982.

8



[8] BITTENCOURT, Guilherme, The MANTRA
Reference Manual, Interner Bericht 2/90, Univ.
Karslruhe, Fak.f.Informatik, Karlsruhe, West Ger-
many, 1/1990; BITTENCOURT, Guilherme, An
Architecture
for Hybrid Knowledge Representation, PhD The-
sis, Univ. Karslruhe, Fak.f.Informatik, Karlsruhe,
West Germany, 31/1/1990.

[9] CALMET, Jacques, TJANDRA, I.A., and BIT-
TENCOURT, G., An Environment for Mathe-
matical Knowledge Representation, SIGSAM Bull.
24(3):47–48, 7/90.

[10] PATEL-SCHNEIDER, Peter F., A Decidable
First-Order Logic for Knowledge Representation,
in “IJCAI 9” (proceedings of International Joint
Conference on Artificial Intelligence, Los Angeles,
Calif., 8/85):455–458, Morgan Kaufmann Publish-
ers, Inc., Palo Alto, Calif., 1985.

[11] FRISCH, A.M., Knowledge Retrieval as Special-
ized Inference, Report No. 214, Department of
Computer Science, University of Rochester, May
1987.

[12] BRACHMAN, Ronald J., and LEVESQUE, Hec-
tor J., The Tractability of Subsumption in Frame-
Based Description Languages, in “proceedings
AAAI-84” (Fifth National Conference on Artificial
Intelligence, Austin, Texas, 1984), Morgan Kauf-
mann Publishers, Inc., 1984.

[13] HORTY, J.F. and THOMASON, R.H. and
TOURETZKY, D.S., A Skeptical Theory of Inher-
itance in Nonmonotonic Semantic Nets, Technical
Report CMU-CS-87-175, Carnegie-Mellon Univer-
sity, Computer Science Department, Pittsburgh,
Pa., 10/1987.

[14] MARTI, Jed, The Role of Explanation in Sym-
bolic Computation, in INADA, N. and SOMA, T.,
(eds.), “The Second RIKEN International Sym-
posium on Symbolic and Algebraic Computation
by Computers”:14–34, World Scientific, Philadel-
phia, PA, 1984.

[15] De SMEDT, Koenraad, Object-Oriented Pro-
gramming in FLAVORS and CommonORBIT, in
HAWLEY, R., (ed.), “Artificial Intelligence Pro-
gramming Environments”: 157–176, Ellis Hor-
wood Limited, 1987.

[16] CALMET, Jacques, Intelligent Computer Algebra
System: Myth, Fancy or Reality? in JANSSEN,
R., (ed.), “Trends in Computer Algebra” (proc.

International Symposium, Bad Neuenahr, 5/87,
Lecture Notes in Computer Science 296):3–11,
Springer-Verlag, Heidelberg, 1987.

A Example of Interaction

For better understanding, suppose that an user with
no experience with REDUCE wants to do some calcu-
lations, for instance, integrate an expression in terms
of a certain variable. Having access to an initialized
session of REDUCE (in which the heading shows how
to invoke Smart Help), the interaction would consist in
typing7 shelp , and Smart Help would promptly fur-
nish a list of topics which can be queried (from which
just a fragment is shown) and ask for a topic to be ex-
plained:

"SHelp - Version 2.2: 14 Sep 1990"
Information is available about the

following topics:
ABS ACOS
ANTISYMMETRIC ANTISYMMETRIC-OPERATOR
...
INT INTEGRATION
...

Topic? (Q to quit Smart Help)

Now the user can enter the desired topic (“integra-
tion” in this case) and get an explanation of it:

Topic? (Q to quit Smart Help)
integration

INDEFINITE-INTEGRATION is the default
for INTEGRATION.

INTEGRATION is represented in Reduce
by INT.

For DEFINITE INTEGRATION, one may try
to DO INDEFINITE-INTEGRATION,
to SAVE-RESULT-IN VARIABLE,
to LOCALLY-SUBSTITUTE VALUES.
References for INTEGRATION: Reduce

Manual, section 7.4
Concerning INTEGRATION, see also:

DIFFERENTIATION.
Topic? (Q to quit Smart Help)

Additionally, having discovered that integration in
REDUCE is done by means of an operator called
“INT”, the user can go further asking for an expla-
nation of it:

7The user could also have typed shelp integration what
would lead Smart Help to explain “integration” directly.

9



Topic? (Q to quit Smart Help) int
INT is a SCALAR-OPERATOR, a kind of

OPERATOR.
INTEGRATION is represented in Reduce

by INT.
Its syntax is:
INT(scalar-expression,variable);
Examples of INT:
INT(LOG(X),X);
References for INT: Reduce Manual,

section 7.4
MOSES, J., Commun. ACM,

14(8):548-560, 8/1971
Topic? (Q to quit Smart Help) q

B The syntax of Smart Help

B.1 Asking

To get help from Smart Help, one invokes it through the
call shelp which can be followed by a topic, in which
case Smart Help will directly give an explanation of it.
In the former case, it will furnish a list of topics which
can be queried and starts a loop asking the user for
topics untill he gives q which stops the loop. That is
(in BNF)

<asking> ::= (shelp) <topic> . . . q |
(shelp <topic>)

B.2 Learning

To insert knowledge into the domain knowledge base,
one invokes Smart Help through the call learn which
can be followed by the knowledge unit. In the former
case, it will start a loop asking the user for knowledge
units untill he gives q which stops the loop.

Note that, in the case of concepts category, in which
links are stablished between concepts, no redundancy
is necessary. That is, if a given link like a → b is
entered, one does not need to enter also b → a in the
same link. When relevant, Smart Help searches the
links both ways.

The syntax of the knowledge unit is8 (in BNF)

<learning> ::= (learn) <knowledge unit> . . . q |
(learn <knowledge unit>)

<knowledge unit> ::= ’(syntax (<identifier>
<syntactical definition>)) |

’(terminology (<identifier>
<terminological definition>)) |

8Presently, the frame definition syntax must follow the
MANTRA frame’s one.

’(concept (<identifier>
<conceptual definition>)) |

’(procedure (<identifier>
<procedural definition>)) |

’(heuristic (<identifier>
<heuristical definition>))

<terminological definition> ::= <frame definition> |
(default
<identifier>) |

(exception
<identifier>) |

<identifier>

<frame definition> ::= (Not <frame definition>) |
(Or-concept
<frame definition> . . .
<frame definition>) |

(And-concept
<frame definition> . . .
<frame definition>) |

(Some <relation>
<frame definition> . . .
<frame definition>) |

(All <relation>
<frame definition> . . .
<frame definition>) |

<identifier> |
T |
NIL

<relation> ::= (Not <relation>) |
(Or-relation
<relation> . . .
<relation>) |

(And-relation
<relation> . . .
<relation>) |

(Restriction <relation>
<frame definition> . . .
<frame definition>) |

<identifier> |
T |
NIL

<conceptual definition> ::= (<conceptual link>
<identifier>) |

(<conceptual link>
<string>)

<conceptual link> ::= is-represented-by |
is-tested-by |
is-implemented-through |
example |
reference |
is-related-to

10



<procedural definition> ::= (<left side>
<right side>)

<heuristical definition> ::= (<left side>
<right side>)

<left side> ::= (<identifier> . . .
<identifier>)

<right side> ::= (<action> . . .<action>)

<action> ::= (<verb>
<identifier>)

11


